Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease

Author:

Chen Chuan1ORCID,Li Lingyan23,Wang Yanfen4ORCID,Dong Xiuzhu23ORCID,Zhao Fang-Jie1ORCID

Affiliation:

1. State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China

2. College of Life Sciences, University of Chinese Academy of Sciences , No.19(A) Yuquan Road, Shijingshan District, 100049 Beijing, China

3. State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , 100101 Beijing, China

4. College of Resources and Environment, University of Chinese Academy of Sciences , No.19(A) Yuquan Road, Shijingshan District, 100049 Beijing, China

Abstract

Abstract Microorganisms play a key role in arsenic (As) biogeochemistry, transforming As species between inorganic and organic forms and different oxidation states. Microbial As methylation is enhanced in anoxic paddy soil, producing primarily dimethylarsenic (DMAs), which can cause rice straighthead disease and large yield losses. DMAs can also be demethylated in paddy soil, but the microorganisms driving this process remain unclear. In this study, we showed that the enrichment culture of methylotrophic methanogens from paddy soil demethylated pentavalent DMAs(V) efficiently. DMAs(V) was reduced to DMAs(III) before demethylation. 16S rRNA gene diversity and metagenomic analysis showed that Methanomassiliicoccus dominated in the enrichment culture, with Methanosarcina and Methanoculleus also being present. We isolated Methanomassiliicoccus luminyensis CZDD1 and Methanosarcina mazei CZ1 from the enrichment culture; the former could partially demethylate trivalent DMAs(III) but not DMAs(V) and the latter could demethylate neither. Addition of strain CZDD1 to the enrichment culture greatly accelerated DMAs(V) demethylation. Demethylation of DMAs(V) in the enrichment culture was suppressed by ampicillin, suggesting the involvement of bacteria. We isolated three anaerobic bacterial strains including Clostridium from the enrichment culture, which could produce hydrogen and reduce DMAs(V) to DMAs(III). Furthermore, augmentation of the Methanomassiliicoccus-Clostridium coculture to a paddy soil decreased DMAs accumulation by rice and alleviated straighthead disease. The results reveal a synergistic relationship whereby anaerobic bacteria reduce DMAs(V) to DMAs(III) for demethylation by Methanomassiliicoccus and also produce hydrogen to promote the growth of Methanomassiliicoccus; enhancing their populations in paddy soil can help alleviate rice straighthead disease.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3