Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances

Author:

Bertran E.,Waldeck A.,Wing B. A.,Halevy I.,Leavitt W. D.,Bradley A. S.ORCID,Johnston D. T.

Abstract

AbstractThe majority of anaerobic biogeochemical cycling occurs within marine sediments. To understand these processes, quantifying the distribution of active cells and gross metabolic activity is essential. We present an isotope model rooted in thermodynamics to draw quantitative links between cell-specific sulfate reduction rates and active sedimentary cell abundances. This model is calibrated using data from a series of continuous culture experiments with two strains of sulfate reducing bacteria (freshwater bacterium Desulfovibrio vulgaris strain Hildenborough, and marine bacterium Desulfovibrio alaskensis strain G-20) grown on lactate across a range of metabolic rates and ambient sulfate concentrations. We use a combination of experimental sulfate oxygen isotope data and nonlinear regression fitting tools to solve for unknown kinetic, step-specific oxygen isotope effects. This approach enables identification of key isotopic reactions within the metabolic pathway, and defines a new, calibrated framework for understanding oxygen isotope variability in sulfate. This approach is then combined with porewater sulfate/sulfide concentration data and diagenetic modeling to reproduce measured 18O/16O in porewater sulfate. From here, we infer cell-specific sulfate reduction rates and predict abundance of active cells of sulfate reducing bacteria, the result of which is consistent with direct biological measurements.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3