Dominance of phage particles carrying antibiotic resistance genes in the viromes of retail food sources

Author:

Blanco-Picazo Pedro,Morales-Cortes Sara,Ramos-Barbero María Dolores,García-Aljaro Cristina,Rodríguez-Rubio LorenaORCID,Muniesa MaiteORCID

Abstract

AbstractThe growth of antibiotic resistance has stimulated interest in understanding the mechanisms by which antibiotic resistance genes (ARG) are mobilized. Among them, studies analyzing the presence of ARGs in the viral fraction of environmental, food and human samples, and reporting bacteriophages as vehicles of ARG transmission, have been the focus of increasing research. However, it has been argued that in these studies the abundance of phages carrying ARGs has been overestimated due to experimental contamination with non-packaged bacterial DNA or other elements such as outer membrane vesicles (OMVs). This study aims to shed light on the extent to which phages, OMVs or contaminating non-packaged DNA contribute as carriers of ARGs in the viromes. The viral fractions of three types of food (chicken, fish, and mussels) were selected as sources of ARG-carrying phage particles, whose ability to infect and propagate in an Escherichia coli host was confirmed after isolation. The ARG-containing fraction was further purified by CsCl density gradient centrifugation and, after removal of DNA outside the capsids, ARGs inside the particles were confirmed. The purified fraction was stained with SYBR Gold, which allowed the visualization of phage capsids attached to and infecting E. coli cells. Phages with Myoviridae and Siphoviridae morphology were observed by electron microscopy. The proteins in the purified fraction belonged predominantly to phages (71.8% in fish, 52.9% in mussels, 78.7% in chicken sample 1, and 64.1% in chicken sample 2), mainly corresponding to tail, capsid, and other structural proteins, whereas membrane proteins, expected to be abundant if OMVs were present, accounted for only 3.8–21.4% of the protein content. The predominance of phage particles in the viromes supports the reliability of the protocols used in this study and in recent findings on the abundance of ARG-carrying phage particles.

Funder

Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3