Abstract
AbstractStreptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations’ ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics,Microbiology
Reference90 articles.
1. Russell JB. Discussion on diphtheria. BMJ. 1891;2:631–40.
2. Joseph FH. Notes on some pathogenic bacteria as found in the Transvaal, and the variations from their European prototype. Rep. S Afr Assoc Adv Sci. 1904;2:237–42.
3. Eyre JW, Washbourn JW. Varities and virulence of the pneumococcus. Lancet. 1899;153:19–22.
4. Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338–46.
5. Colijn C, Corander J, Croucher NJ. Designing ecologically optimized pneumococcal vaccines using population genomics. Nat Microbiol. 2020;5:473–85.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献