Niche-based assembly of bacterial consortia on the diatom Thalassiosira rotula is stable and reproducible

Author:

Mönnich Julian,Tebben JanORCID,Bergemann Jennifer,Case Rebecca,Wohlrab Sylke,Harder TilmannORCID

Abstract

AbstractWith each cell division, phytoplankton create new space for primary colonization by marine bacteria. Although this surface microenvironment is available to all planktonic bacterial colonizers, we show the assembly of bacterial consortia on a cosmopolitan marine diatom to be highly specific and reproducible. While phytoplankton–bacteria interactions play fundamental roles in marine ecosystems, namely primary production and the carbon cycle, the ecological paradigm behind epiphytic microbiome assembly remains poorly understood. In a replicated and repeated primary colonization experiment, we exposed the axenic diatom Thalassiosira rotula to several complex and compositionally different bacterial inocula derived from phytoplankton species of varying degrees of relatedness to the axenic Thalassiosira host or natural seawater. This revealed a convergent assembly of diverse and compositionally different bacterial inocula, containing up to 2071 operational taxonomic units (OTUs), towards a stable and reproducible core community. Four of these OTUs already accounted for a cumulative abundance of 60%. This core community was dominated by Rhodobacteraceae (30.5%), Alteromonadaceae (27.7%), and Oceanospirillales (18.5%) which was qualitatively and quantitatively most similar to its conspecific original. These findings reject a lottery assembly model of bacterial colonization and suggest selective microhabitat filtering. This is likely due to diatom host traits such as surface properties and different levels of specialization resulting in reciprocal stable-state associations.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3