Abstract
AbstractLake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth’s surface. LT’s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT’s 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted to bring increased stratification and anoxia to freshwater lakes.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
NSF | BIO | Division of Environmental Biology
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics,Microbiology
Reference70 articles.
1. Alin SR, Johnson TC. Carbon cycling in large lakes of the world: a synthesis of production, burial, and lake-atmosphere exchange estimates. Glob Biogeochemical Cycles. 2007;21:GB3002.
2. Durisch-Kaiser E, Schmid M, Peeters F, Kipfer R, Dinkel C, Diem T, et al. What prevents outgassing of methane to the atmosphere in Lake Tanganyika? J Geophys Res. 2011;116:G02022.
3. Takahashi T, Koblmüller S. The adaptive radiation of Cichlid fish in Lake Tanganyika: a morphological perspective. Int J Evolut Biol. 2011;2011:1–14.
4. Salzburger W. Understanding explosive diversification through Cichlid fish genomics. Nat Rev Genet. 2018;19:705–17.
5. Corman JR, McIntyre PB, Kuboja B, Mbemba W, Fink D, Wheeler CW, et al. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa. Limnol Oceanogr. 2010;55:214–24.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献