Interspecific competition can drive plasmid loss from a focal species in a microbial community

Author:

Sünderhauf David1ORCID,Klümper Uli2ORCID,Gaze William H3ORCID,Westra Edze R1ORCID,van Houte Stineke1

Affiliation:

1. Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute , Penryn TR10 9FE, UK

2. Department Hydrosciences, Technische Universität Dresden, Institute of Hydrobiology , Dresden, Germany

3. European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute , Penryn TR10 9FE, UK

Abstract

Abstract Plasmids are key disseminators of antimicrobial resistance genes and virulence factors, and it is therefore critical to predict and reduce plasmid spread within microbial communities. The cost of plasmid carriage is a key metric that can be used to predict plasmids’ ecological fate, and it is unclear whether plasmid costs are affected by growth partners in a microbial community. We carried out competition experiments and tracked plasmid maintenance using a model system consisting of a synthetic and stable five-species community and a broad host-range plasmid, engineered to carry different payloads. We report that both the cost of plasmid carriage and its long-term maintenance in a focal strain depended on the presence of competitors, and that these interactions were species specific. Addition of growth partners increased the cost of a high-payload plasmid to a focal strain, and accordingly, plasmid loss from the focal species occurred over a shorter time frame. We propose that the destabilising effect of interspecific competition on plasmid maintenance may be leveraged in clinical and natural environments to cure plasmids from focal strains.

Funder

RCUK | Medical Research Council

Bundesministerium für Bildung und Forschung

RCUK | Biotechnology and Biological Sciences Research Council

Lister Institute of Preventive Medicine

Publisher

Oxford University Press (OUP)

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3