Contrasting patterns in phylogenetic and biogeographic factories of invasive grasses (Poaceae) across the globe

Author:

Pertierra Luis R.,Martínez Pablo A.,Rubalcaba Juan G.,Richardson David M.,Olalla-Tárraga Miguel A.

Abstract

AbstractGrasses (Family Poaceae) are among the most successful invasive plants in the world. Here we evaluate phylogenetic and biogeographic patterns of emergence of naturalized and invasive species among grasses globally. In our data, circa 19% of the grasses are currently catalogued as invasive and almost 38% are listed as naturalized; these are among the highest ratios for single families of organisms. Remarkably, most tribes of grasses contain numerous naturalized and invasive species, suggesting that the invasion success is rooted broadly in ancestral traits in the Poaceae. Moreover, the probability of invasiveness is positively related to the diversification rates in the family also suggesting a link with recent radiation events. The phylogenetic distribution of the invasive condition is neither strongly conserved nor purely random. Phylogenetic clumping levels also vary between Poaceae subclades. We postulate that this diffuse clumping could be partially attributed to the expression of labile traits that contribute to species invasiveness. In addition, floristic regions (biomes and biogeographic realms) have different proportions of invasive species, with the temperate Palearctic region having the highest ratio of invasive vs. non-invasive species. The phylodiversity of aliens across regions is also variable in space. Comparison of alien phylodiversity levels across biogeographic realms and biomes reveals regions producing highly restricted invasive lineages and others where the diversity of aliens exported is no different from global mean diversity levels in grasses. Elucidating the evolutionary patterns and drivers of invasiveness is useful for understanding and managing invasions, with the low phylogenetic structure of alien grasses warning of their overall high invasiveness potential.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3