Abstract
AbstractNeurosteroids that positively modulate GABAA receptors are among a growing list of rapidly acting antidepressants, including ketamine and psychedelics. To develop increasingly specific treatments with fewer side effects, we explored the possibility of EEG signatures in mice, which could serve as a cross-species screening tool. There are few studies of the impact of non-sedative doses of rapid antidepressants on EEG in either rodents or humans. Here we hypothesize that EEG features may separate a rapid antidepressant neurosteroid, allopregnanolone, from other GABAA positive modulators, pentobarbital and diazepam. Further, we compared the actions GABA modulators with those of ketamine, an NMDA antagonist and prototype rapid antidepressant. We examined EEG spectra during active exploration at two cortical locations and examined cross-regional and cross-frequency interactions. We found that at comparable doses, the effects of allopregnanolone, despite purported selectivity for certain GABAAR subtypes, was indistinguishable from pentobarbital during active waking exploration. The actions of diazepam had recognizable common features with allopregnanolone and pentobarbital but was also distinct, consistent with subunit selectivity of benzodiazepines. Finally, ketamine exhibited no distinguishing overlap with allopregnanolone in the parameters examined. Our results suggest that rapid antidepressants with different molecular substrates may remain separated at the level of large-scale ensemble activity, but the studies leave open the possibility of commonalities in more discrete circuits and/or in the context of a dysfunctional brain.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Mental Health
U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health,Pharmacology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献