Anterior cingulate glutamate metabolites as a predictor of antipsychotic response in first episode psychosis: data from the STRATA collaboration

Author:

Egerton AliceORCID,Griffiths Kira,Casetta Cecila,Deakin BillORCID,Drake RichardORCID,Howes Oliver D.,Kassoumeri Laura,Khan Sobia,Lankshear Steve,Lees Jane,Lewis Shon,Mikulskaya Elena,Millgate Edward,Oloyede Ebenezer,Pollard Rebecca,Rich Nathalie,Segev Aviv,Sendt Kyra-Verena,MacCabe James H.ORCID

Abstract

AbstractElevated brain glutamate has been implicated in non-response to antipsychotic medication in schizophrenia. Biomarkers that can accurately predict antipsychotic non-response from the first episode of psychosis (FEP) could allow stratification of patients; for example, patients predicted not to respond to standard antipsychotics could be fast-tracked to clozapine. Using proton magnetic resonance spectroscopy (1H-MRS), we examined the ability of glutamate and Glx (glutamate plus glutamine) in the anterior cingulate cortex (ACC) and caudate to predict response to antipsychotic treatment. A total of 89 minimally medicated patients with FEP not meeting symptomatic criteria for remission were recruited across two study sites. 1H-MRS and clinical data were acquired at baseline, 2 and 6 weeks. Response was defined as >20% reduction in Positive and Negative Syndrome Scale (PANSS) Total score from baseline to 6 weeks. In the ACC, baseline glutamate and Glx were higher in Non-Responders and significantly predicted response (P < 0.02; n = 42). Overall accuracy was greatest for ACC Glx (69%) and increased to 75% when symptom severity at baseline was included in the model. Glutamate metabolites in the caudate were not associated with response, and there was no significant change in glutamate metabolites over time in either region. These results add to the evidence linking elevations in ACC glutamate metabolites to a poor antipsychotic response. They indicate that glutamate may have utility in predicting response during early treatment of first episode psychosis. Improvements in accuracy may be made by combining glutamate measures with other response biomarkers.

Funder

RCUK | Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3