Abstract
AbstractSynaptic serotonin levels in the brain are regulated by active transport into the bouton by the serotonin transporter, and by autoreceptors, such as the inhibitory serotonin (5-HT) 1B receptor which, when activated, decreases serotonin release. Animal studies have shown a regulatory link between the two proteins. Evidence of such coupling could translate to an untapped therapeutic potential in augmenting the effect of selective serotonin reuptake inhibitors through pharmacological modulation of 5-HT1B receptors. Here we will for the first time in vivo examine the relationship between 5-HT1B receptors and serotonin transporters in the living human brain. Seventeen healthy individuals were examined with PET twice, using the radioligands [11C]AZ10419369 and [11C]MADAM for quantification of the 5-HT1B receptor and the 5-HT transporter, respectively. The binding potential was calculated for a set of brain regions, and the correlations between the binding estimates of the two radioligands were studied. [11C]AZ10419369 and [11C]MADAM binding was positively correlated in all examined brain regions. In most cortical regions the correlation was strong, e.g., frontal cortex, r(15) = 0.64, p = 0.01 and parietal cortex, r(15) = 0.8, p = 0.0002 while in most subcortical regions, negligible correlations was observed. Though the correlation estimates in cortex should be interpreted with caution due to poor signal to noise ratio of [11C]MADAM binding in these regions, it suggests a link between two key proteins involved in the regulation of synaptic serotonin levels. Our results indicate a need for further studies to address the functional importance of 5-HT1B receptors in treatment with drugs that inhibit serotonin reuptake.
Funder
Swedish Mental Health Fund; Swedish Society of Medicine
Vetenskapsrådet
StratNeuro, a donation from Birgitta and Sten Westerberg, Region Stockholm
Publisher
Springer Science and Business Media LLC
Subject
Psychiatry and Mental health,Pharmacology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献