Nondestructive, longitudinal, 3D oxygen imaging of cells in a multi-well plate using pulse electron paramagnetic resonance imaging

Author:

Hameed Safa,Viswakarma Navin,Babakhanova Greta,Simon Carl G.ORCID,Epel BorisORCID,Kotecha MrignayaniORCID

Abstract

AbstractThe use of oxygen by cells is an essential aspect of cell metabolism and a reliable indicator of viable and functional cells. Here, we report partial pressure oxygen (pO2) mapping of live cells as a reliable indicator of viable and metabolically active cells. For pO2 imaging, we utilized trityl OX071-based pulse electron paramagnetic resonance oxygen imaging (EPROI), in combination with a 25 mT EPROI instrument, JIVA-25™, that provides 3D oxygen maps with high spatial, temporal, and pO2 resolution. To perform oxygen imaging in an environment-controlled apparatus, we developed a novel multi-well-plate incubator-resonator (MWIR) system that could accommodate 3 strips from a 96-well strip-well plate and image the middle 12 wells noninvasively and simultaneously. The MWIR system was able to keep a controlled environment (temperature at 37 °C, relative humidity between 70%–100%, and a controlled gas flow) during oxygen imaging and could keep cells alive for up to 24 h of measurement, providing a rare previously unseen longitudinal perspective of 3D cell metabolic activities. The robustness of MWIR was tested using an adherent cell line (HEK-293 cells), a nonadherent cell line (Jurkat cells), a cell-biomaterial construct (Jurkat cells seeded in a hydrogel), and a negative control (dead HEK-293 cells). For the first time, we demonstrated that oxygen concentration in a multi-well plate seeded with live cells reduces exponentially with the increase in cell seeding density, even if the cells are exposed to incubator-like gas conditions. For the first time, we demonstrate that 3D, longitudinal oxygen imaging can be used to assess cells seeded in a hydrogel. These results demonstrate that MWIR-based EPROI is a versatile and robust method that can be utilized to observe the cell metabolic activity nondestructively, longitudinally, and in 3D. This approach may be useful for characterizing cell therapies, tissue-engineered medical products, and other advanced therapeutics.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3