Author:
Menon Karthik,Khan Muhammed Owais,Sexton Zachary A.,Richter Jakob,Nguyen Patricia K.,Malik Sachin B.,Boyd Jack,Nieman Koen,Marsden Alison L.
Abstract
AbstractComputational simulations of coronary artery blood flow, using anatomical models based on clinical imaging, are an emerging non-invasive tool for personalized treatment planning. However, current simulations contend with two related challenges – incomplete anatomies in image-based models due to the exclusion of arteries smaller than the imaging resolution, and the lack of personalized flow distributions informed by patient-specific imaging. We introduce a data-enabled, personalized and multi-scale flow simulation framework spanning large coronary arteries to myocardial microvasculature. It includes image-based coronary anatomies combined with synthetic vasculature for arteries below the imaging resolution, myocardial blood flow simulated using Darcy models, and systemic circulation represented as lumped-parameter networks. We propose an optimization-based method to personalize multiscale coronary flow simulations by assimilating clinical CT myocardial perfusion imaging and cardiac function measurements to yield patient-specific flow distributions and model parameters. Using this proof-of-concept study on a cohort of six patients, we reveal substantial differences in flow distributions and clinical diagnosis metrics between the proposed personalized framework and empirical methods based purely on anatomy; these errors cannot be predicted a priori. This suggests virtual treatment planning tools would benefit from increased personalization informed by emerging imaging methods.
Funder
National Institutes of Health
Additional Ventures Cures Collaborative
National Science Foundation, United States
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献