Time Course of Post-Traumatic Mitochondrial Oxidative Damage and Dysfunction in a Mouse Model of Focal Traumatic Brain Injury: Implications for Neuroprotective Therapy

Author:

Singh Indrapal N1,Sullivan Patrick G1,Deng Ying1,Mbye Lamin H1,Hall Edward D1

Affiliation:

1. Spinal Cord & Brain Injury Research Center and Department of Anatomy & Neurobiology, University of Kentucky Medical Center, Lexington, Kentucky, USA

Abstract

In the present study, we investigate the hypothesis that mitochondrial oxidative damage and dysfunction precede the onset of neuronal loss after controlled cortical impact traumatic brain injury (TBI) in mice. Accordingly, we evaluated the time course of post-traumatic mitochondrial dysfunction in the injured cortex and hippocampus at 30 mins, 1, 3, 6, 12, 24, 48, and 72 h after severe TBI. A significant decrease in the coupling of the electron transport system with oxidative phosphorylation was observed as early as 30 mins after injury, followed by a recovery to baseline at 1 h after injury. A statistically significant ( P < 0.0001) decline in the respiratory control ratio was noted at 3 h, which persisted at all subsequent time-points up to 72 h after injury in both cortical and hippocampal mitochondria. Structural damage seen in purified cortical mitochondria included severely swollen mitochondria, a disruption of the cristae and rupture of outer membranes, indicative of mitochondrial permeability transition. Consistent with this finding, cortical mitochondrial calcium-buffering capacity was severely compromised by 3h after injury, and accompanied by significant increases in mitochondrial protein oxidation and lipid peroxidation. A possible causative role for reactive nitrogen species was suggested by the rapid increase in cortical mitochondrial 3-nitrotyrosine levels shown as early as 30 mins after injury. These findings indicate that post-traumatic oxidative lipid and protein damage, mediated in part by peroxynitrite, occurs in mitochondria with concomitant ultrastructural damage and impairment of mitochondrial bioenergetics. The data also indicate that compounds which specifically scavenge peroxynitrite (ONOO) or ONOOderived radicals (e.g. ONOO + H+ → ONOOH → NO2 + OH) may be particularly effective for the treatment of TBI, although the therapeutic window for this neuroprotective approach might only be 3 h.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3