Interleukin-6 Stimulates Circulating Blood-Derived Endothelial Progenitor Cell Angiogenesis in vitro

Author:

Fan Yongfeng1,Ye Jianqin2,Shen Fanxia1,Zhu Yiqian1,Yeghiazarians Yerem2,Zhu Wei1,Chen Yongmei1,Lawton Michael T3,Young William L134,Yang Guo-Yuan13

Affiliation:

1. Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA

2. Department of Cardiology, University of California San Francisco, San Francisco, California, USA

3. Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA

4. Department of Neurology, University of California San Francisco, San Francisco, California, USA

Abstract

Circulating blood endothelial progenitor cells (EPCs) contribute to postnatal vasculogenesis, providing a novel therapeutic target for vascular diseases. However, the molecular mechanism of EPC-induced vasculogenesis is unknown. Interleukin-6 plays multiple functions in angiogenesis and vascular remodeling. Our previous study demonstrated that the polymorphism (174G > C) in IL-6 gene promoter was associated with brain vascular disease. In this study, we investigated if IL-6 receptor is expressed in human EPCs derived from circulating mononuclear cells, and if interleukin-6 (IL-6) stimulates EPC angiogenesis in vitro. First, we isolated and cultured mononuclear cells from adult human circulating blood. We obtained EPC clones that were further cultured and expended for the angiogenesis study. We found that the EPCs possessed human mature endothelial cell phenotypes; however, they proliferated much faster than mature endothelial cells ( P <0.05). We then found that IL-6 receptor (gp-80) was expressed in the EPCs, and that administration of IL-6 could activate receptor gp80/gp130 signaling pathways including downstream extracellular signal-regulated kinase 1/2 and STAT3 phosphorylation in EPCs. Furthermore, IL-6 stimulated EPC proliferation, migration, and matrigel tube formation in a dose-dependent manner ( P <0.05); anti-IL-6 antibodies or IL-6 receptor could abolish these effects ( P <0.05). These results suggest that IL-6 plays a crucial role in the biologic behavior of blood-derived EPCs, which may help clarify the mechanism of IL-6 inflammatory-related diseases.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3