Affiliation:
1. Department of Pediatrics, Section of Respiratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
Abstract
Central neurons are extremely vulnerable to hypoxic/ischemic insult, which is a major cause of neurologic morbidity and mortality as a consequence of neuronal dysfunction and death. Our recent work has shown that δ-opioid receptor (DOR) is neuroprotective against hypoxic and excitotoxic stress, although the underlying mechanisms remain unclear. Because hypoxia/ischemia disrupts ionic homeostasis with an increase in extracellular K+, which plays a role in neuronal death, we asked whether DOR activation preserves K+ homeostasis during hypoxic/ischemic stress. To test this hypothesis, extracellular recordings with K+-sensitive microelectrodes were performed in mouse cortical slices under anoxia or oxygen–glucose deprivation (OGD). The main findings in this study are that (1) DOR activation with [D-Ala2, D-Leu5]-enkephalinamide attenuated the anoxia- and OGD-induced increase in extracellular K+ and decrease in DC potential in cortical slices; (2) DOR inhibition with naltrindole, a DOR antagonist, completely abolished the DOR-mediated prevention of increase in extracellular K+ and decrease in DC potential; (3) inhibition of protein kinase A (PKA) with N-(2-[p-bromocinnamylamino]-ethyl)-5-isoquinolinesulfonamide dihydrochloride had no effect on the DOR protection; and (4) inhibition of protein kinase C (PKC) with chelerythrine chloride reduced the DOR protection, whereas the PKC activator (phorbol 12-myristate 13-acetate) mimicked the effect of DOR activation on K+ homeostasis. These data suggest that activation of DOR protects the cortex against anoxia- or ODG-induced derangement of potassium homeostasis, and this protection occurs via a PKC-dependent and PKA-independent pathway. We conclude that an important aspect of DOR-mediated neuroprotection is its early action against derangement of K+ homeostasis during anoxia or ischemia.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献