Long-Term Neuroprotection with 2-Iminobiotin, An Inhibitor of Neuronal and Inducible Nitric Oxide Synthase, after Cerebral Hypoxia-Ischemia in Neonatal Rats

Author:

Tweel Evelyn RW van den12,van Bel Frank1,Kavelaars Annemieke2,Peeters-Scholte Cacha MPCD1,Haumann Johan1,Nijboer Cora HA12,Heijnen Cobi J2,Groenendaal Floris1

Affiliation:

1. Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

2. Laboratory for Psycho-Neuro-Immunology and Perinatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands

Abstract

The short- and long-term neuroprotective effects of 2-iminobiotin, a selective inhibitor of neuronal and inducible nitric oxide synthase, were studied in 12-day-old rats following hypoxia-ischemia. Hypoxia-ischemia was induced by occlusion of the right carotid artery followed by 90 minutes of hypoxia (FiO2 0.08). Immediately on reoxygenation, 12 and 24 hours later the rats were treated with vehicle or 2-iminobiotin at a dose of 5.5, 10, 30, or 60 mg/kg per day. Histologic analysis of brain damage was performed at 6 weeks after hypoxia-ischemia. To assess early changes of cerebral tissue, levels of HSP70, nitrotyrosine, and cytochrome c were determined 24 hours after reoxygenation. Significant neuroprotection was obtained using a dose of 30 mg/kg per day of 2-iminobiotin. Levels of HSP70 were increased in the ipsilateral hemisphere in both groups ( P<0.05), but the increase was significantly ( P<0.05) less in the rats receiving the optimal dose of 2-iminobiotin (30 mg/kg per day). Hypoxia-ischemia did not lead to increased levels of nitrotyrosine, nor did 2-iminobiotin influence levels of nitrotyrosine. In contrast, hypoxia-ischemia induced an increase in cytochrome c level that was prevented by 2-iminobiotin. In conclusion, 2-iminobiotin administered after hypoxia-ischemia provides long-term neuroprotection. This neuroprotection is obtained by mechanisms other than a reduction of nitrotyrosine formation in proteins.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3