Imaging Visual Recognition Memory Network by PET in the Baboon: Perirhinal Cortex Heterogeneity and Plasticity after Perirhinal Lesion

Author:

Rauchs Géraldine1,Blaizot Xavier2,Giffard Cyrille1,Baron Jean-Claude3,Insausti Ricardo2,Chavoix Chantal14

Affiliation:

1. INSERM, U320, Caen, France

2. Laboratory of Human Neuroanatomy, School of Medicine, University of Castilla-La Mancha, Albacete, Spain

3. Department of Neurology, University of Cambridge, Cambridge, UK

4. University of Caen, UPRES-EA 3917, Caen, France

Abstract

We recently mapped the visual recognition memory network in the behaving baboon using a positron emission tomography (PET) activation paradigm with 18F-fluoro-deoxyglucose during a visual delayed matching-to-sample task. This study confirmed the key role of the perirhinal cortex and documented an unexpected left-sided advantage. Specific contribution of each subdivision of the perirhinal cortex has, however, never been investigated. Furthermore, although alteration to the perirhinal cortex has been implicated in several brain disorders, putative plasticity within the entire brain network after perirhinal damage remains largely unknown. To confirm our previous data and to investigate these latter issues, we used our PET activation paradigm on a second healthy baboon before and after 16 months after bilateral excitotoxic lesions of the perirhinal cortex. Activation common to our two healthy baboons occurred only in the left rostroventral perirhinal cortex (i.e., areas 36pm and rostral 36r) and insular cortex. Although histologic analysis disclosed that the perirhinal lesions achieved in the present baboon were essentially caudal to this preoperatively activated area, memory performance was severely impaired. Concomitant with this long-lasting cognitive deficit, changes in the neural network implicated in the task were observed, involving disappearance of the preoperative activations and appearance of a significant activation of the frontal and occipital cortices. However, different activation patterns were found in the first and last eight postoperative months. These findings highlight the functional heterogeneity of the perirhinal cortex and evidence progressive plasticity after perirhinal cortex damage.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3