Comparison of Plasma Input and Reference Tissue Models for Analysing [11C]flumazenil Studies

Author:

Klumpers Ursula MH1,Veltman Dick J12,Boellaard Ronald2,Comans Emile F2,Zuketto Cassandra1,Yaqub Maqsood2,Mourik Jurgen EM2,Lubberink Mark2,Hoogendijk Witte JG1,Lammertsma Adriaan A2

Affiliation:

1. Department of Psychiatry, VU University Medical Centre, Amsterdam, The Netherlands

2. Department of Nuclear Medicine and PET Research, VU University Medical Centre, Amsterdam, The Netherlands

Abstract

A single-tissue compartment model with plasma input is the established method for analysing [11C]flumazenil ([11C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been fully validated for [11C]FMZ. Dynamic [11C]FMZ positron emission tomography scans with arterial blood sampling were performed in nine drug-free depressive patients and eight healthy subjects. Regions of interest were defined on co-registered magnetic resonance imaging scans and projected onto dynamic [11C]FMZ images. Using a Hill-type metabolite function, single (1T) and reversible two-tissue (2T) compartmental models were compared. Simplified reference tissue model (SRTM) and full reference tissue model (FRTM) were investigated using both pons and (centrum semiovale) white matter as reference tissue. The 2T model provided the best fit in 59% of cases. Two-tissue VT values were on average 1.6% higher than 1T VT values. Owing to the higher rejection rate of 2T fits (7.3%), the 1T model was selected as plasma input method of choice. SRTM was superior to FRTM, irrespective whether pons or white matter was used as reference tissue. BPND values obtained with SRTM correlated strongly with 1T VT ( r = 0.998 and 0.995 for pons and white matter, respectively). Use of white matter as reference tissue resulted in 5.5% rejected fits, primarily in areas with intermediate receptor density. No fits were rejected using pons as reference tissue. Pons produced 23% higher BPND values than white matter. In conclusion, for most clinical studies, SRTM with pons as reference tissue can be used for quantifying [11C]FMZ binding.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3