Plasminogen Potentiates Thrombin Cytotoxicity and Contributes to Pathology of Intracerebral Hemorrhage in Rats

Author:

Fujimoto Shinji1,Katsuki Hiroshi12,Ohnishi Masatoshi1,Takagi Mikako1,Kume Toshiaki1,Akaike Akinori1

Affiliation:

1. Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan

2. Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan

Abstract

Thrombin and plasmin are serine proteases involved in blood coagulation and fibrinolysis, whose precursors are circulating in blood stream. These blood-derived proteases might play important roles in the pathogenesis of intracerebral hemorrhage by acting on brain parenchymal cells. We previously reported that thrombin induced delayed neuronal injury through extracellular signal-regulated kinase (ERK)-dependent pathways. Here, we investigated potential cytotoxic actions of plasminogen, a precursor protein of plasmin, using slice cultures prepared from neonatal rat brain and intracortical microinjection model in adult rats. Although plasminogen alone did not evoke prominent neuronal injury, plasminogen caused significant neuronal injury when combined with a moderate concentration of thrombin (30 U/mL) in the cerebral cortex of slice cultures. The cortical injury was prevented by tranexamic acid and aprotinin. The combined neurotoxicity of thrombin and plasminogen was also prevented by PD98059, an inhibitor of ERK pathway, as well as by other agents that have been shown to prevent cortical injury induced by a higher concentration (100 U/mL) of thrombin alone. Extracellular signal-regulated kinase phosphorylation after plasminogen exposure was localized in cortical astrocytes. Moreover, microinjection of plasminogen in vivo potentiated thrombin-induced cortical injury, and inhibition of plasmin ameliorated hemorrhage-induced neuronal loss in the cerebral cortex. These results suggest that plasminogen/plasmin system augmenting thrombin neurotoxicity participates in hemorrhagic cortical injury.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3