Affiliation:
1. Department of Radiology and Nuclear Medicine, Akita Research Institute of Brain and Blood Vessels, Akita, Japan
2. Department of Nuclear Medicine and Radiology, Division of Brain Sciences, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
Abstract
The discrepancy between the increases in cerebral blood flow (CBF) and CMRO2 during neural activation causes an increase in venous blood oxygenation and, therefore, a decrease in paramagnetic deoxyhemoglobin concentration in venous blood. This can be detected by functional magnetic resonance imaging (fMRI) as blood oxygenation level-dependent (BOLD) contrast. In the present study, changes in the cerebral oxygen extraction fraction (OEF) that corresponds to the ratio of CMRO2 to CBF, and in the BOLD signal during neural activation, were measured by both positron emission tomography (PET) and fMRI in the same human subjects. C15O, 15O2, and H215O PET studies were performed in each subject at rest (baseline) and during performance of a right-hand motor task. Functional magnetic resonance imaging studies were then performed to measure the BOLD signal under the two conditions. During performance of the motor task, a significant increase in CBF and a significant decrease in OEF were observed in the left precentral gyrus, left superior frontal gyrus, right precentral gyrus, right cingulate gyrus, and right cerebellum. A significant positive correlation was observed between changes in the CBF and the BOLD signal, and a significant negative correlation was observed between changes in the OEF and the BOLD signal. This supports the assumption on which BOLD contrast studies during neural activation are based.
Subject
Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献