Parkinson's Disease and Brain Mitochondrial Dysfunction: A Functional Phosphorus Magnetic Resonance Spectroscopy Study

Author:

Rango Mario12,Bonifati Cristiana12,Bresolin Nereo12

Affiliation:

1. Department of Neurological Sciences, Parkinson's Disease Center, Maggiore Policlinico Hospital, IRCCS, University of Milan, Milan, Italy

2. Magnetic Resonance Center, Maggiore Policlinico Hospital, IRCCS, University of Milan, Milan, Italy

Abstract

In spite of several evidences for a mitochondrial impairment in Parkinson's disease (PD), so far it has not been possible to show in vivo mitochondrial dysfunction in the human brain of PD patients. The authors used the high temporal and spatial resolution 31 phosphorus magnetic resonance spectroscopy (31P MRS) technique, which they have previously developed in normal subjects and in patients with mitochondrial diseases to study mitochondrial function by observing high-energy phosphates (HEPs) and intracellular pH (pH) in the visual cortex of 20 patients with PD and 20 normal subjects at rest, during, and after visual activation. In normal subjects, HEPs remained unchanged during activation, but rose significantly (by 16%) during recovery, and pH increased during visual activation with a slow return to rest values. In PD patients, HEPs were within the normal range at rest and did not change during activation, but fell significantly (by 36%) in the recovery period; pH did not reveal a homogeneous pattern with a wide spread of values. Energy unbalance under increased oxidative metabolism requirements, that is, the postactivation phase, discloses a mitochondrial dysfunction that is present in the brain of patients with PD even in the absence of overt clinical manifestations, as in the visual cortex. This is in agreement with our previous findings in patients with mitochondrial disease without clinical central nervous system (CNS) involvement. The heterogeneity of the physicochemical environment (i.e., pH) suggests various degrees of subclinical brain involvement in PD. The combined use of MRS and brain activation is fundamental for the study of brain energetics in patients with PD and may prove an important tool for diagnostic purposes and, possibly, to monitor therapeutic interventions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3