Induction of Prostacyclin/PGI2 Synthase Expression After Cerebral Ischemia–Reperfusion

Author:

Fang Yao-Ching1,Wu Jui-Sheng1,Chen Jean-Ju2,Cheung Wai-Mui2,Tseng Ping-Hui2,Tarn Ka-Bik2,Shyue Song-Kun2,Chen Jin-Jer2,Lin Teng-Nan

Affiliation:

1. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC

2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC

Abstract

Prostacyclin (PGI2), a potent vasodilator and inhibitor of platelet aggregation and leukocyte activation, is crucial in vascular diseases such as stroke. Prostacyclin synthase (PGIS) is the key enzyme for PGI2 synthesis. Although expression of PGIS was noted in the brain, its role in ischemic insult remains unclear. Here we reported the temporal and spatial expression of PGIS mRNA and protein after 60-min transient ischemia. Northern blot and in situ hybridization revealed a delayed increase of PGIS mRNA in the ischemic cortex at 24- to 72-h after ischemia; PGIS was detected mainly in the ipsilateral penumbra area, pyriform cortex, hippocampus, and leptomeninges. Western blot and immunohistochemical analysis revealed that PGIS proteins were expressed temporally and spatially similar to PGIS mRNA. PGIS was heavily colocalized with PECAM-1 to endothelial cells at the leptomeninges, large and small vessels, and localized to neuronal cells, largely at the penumbra area. A substantial amount of PGIS was also detected in the macrophage and glial cells. To evaluate its role against ischemic infarct, we overexpressed PGIS by adenoviral gene transfer. When infused 72 h before ischemia (–72 h), Adv-PGIS reduced infarct volume by ~50%. However, it had no effect on infarct volume when infused immediately after ischemia (0 h). Eicosanoid analysis revealed selective elevation of PGI2 at −72 h while PGI2 and TXB2 were both elevated at 0 h, altering the PGI2/thromboxane A2 (TXA2) ratio from 10 to 4. These findings indicate that PGIS protects the brain by enhancing PGI2 synthesis and creating a favorable PGI2/TXA2 ratio.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3