Acute Exposure to Normobaric Mild Hypoxia Alters Dynamic Relationships between Blood Pressure and Cerebral Blood Flow at Very Low Frequency

Author:

Iwasaki Ken-ichi1,Ogawa Yojiro12,Shibata Shigeki3,Aoki Ken1

Affiliation:

1. Department of Hygiene and Space Medicine, Nihon University School of Medicine, Tokyo, Japan

2. Department of Dental Anesthesiology, Nihon University School of Dentistry, Tokyo, Japan

3. Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan

Abstract

Acute hypoxia directly causes cerebral arteriole vasodilation and also stimulates peripheral chemoreceptors to change autonomic neural activity. These changes may alter cerebral vascular modulation. We therefore hypothesized that dynamic cerebral autoregulation would be altered during acute exposure to hypoxia. Fifteen healthy men were examined under normoxic (21%) and hypoxic conditions. Oxygen concentrations were decreased in stepwise fashion to 19%, 17%, and 15%, for 10 mins at each level. Mean blood pressure (MBP) in the radial artery was measured via tonometry, and cerebral blood flow velocity (CBFV) in the middle cerebral artery was measured by transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis of beat-by-beat changes in MBP and CBFV. Arterial oxygen saturation decreased significantly during hypoxia, while end-tidal CO2 and respiratory rate were unchanged, as was steady-state CBFV. With 15% O2, very-low-frequency power of MBP and CBFV variability increased significantly by 185% and 282%, respectively. Moreover, transfer function coherence (21% O2, 0.46 ± 0.04; 15% O2, 0.64 ± 0.04; P = 0.028) and gain (21% O2, 0.61 ± 0.05 cm/secs/mm Hg; 15% O2, 0.86 ± 0.08 cm/secs/mm Hg; P = 0.035) in the very-low-frequency range increased significantly by 53% and 48% with 15% O2, respectively. However, these indices were unchanged in low- and high-frequency ranges. Acute hypoxia thus increases arterial pressure oscillations and dependence of cerebral blood flow (CBF) fluctuations on blood pressure oscillations, resulting in apparent increases in CBF fluctuations in the very-low-frequency range. Hypoxia may thus impair dynamic cerebral autoregulation in this range. However, these changes were significant only with hypoxia at 15% O2, suggesting a possible threshold for such changes.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3