Regeneration and Plasticity in the Brain and Spinal Cord

Author:

Johansson Barbro B1

Affiliation:

1. Wallenberg Neuroscience Center, Department of Clinical Neuroscience, Lund University, Lund, Sweden

Abstract

The concept of brain plasticity covers all the mechanisms involved in the capacity of the brain to adjust and remodel itself in response to environmental requirements, experience, skill acquisition, and new challenges including brain lesions. Advances in neuroimaging and neurophysiologic techniques have increased our knowledge of task-related changes in cortical representation areas in the intact and injured human brain. The recognition that neuronal progenitor cells proliferate and differentiate in the subventricular zone and dentate gyrus in the adult mammalian brain has raised the hope that regeneration may be possible after brain lesions. Regeneration will require that new cells differentiate, survive, and integrate into existing neural networks and that axons regenerate. To what extent this will be possible is difficult to predict. Current research explores the possibilities to modify endogenous neurogenesis and facilitate axonal regeneration using myelin inhibitory factors. After apoptotic damage in mice new cortical neurons can form long-distance connections. Progenitor cells from the subventricular zone migrate to cortical and subcortical regions after ischemic brain lesions, apparently directed by signals from the damaged region. Postmortem studies on human brains suggest that neurogenesis may be altered in degenerative diseases. Functional and anatomic data indicate that myelin inhibitory factors, cell implantation, and modification of extracellular matrix may be beneficial after spinal cord lesions. Neurophysiologic data demonstrating that new connections are functioning are needed to prove regeneration. Even if not achieving the goal, methods aimed at regeneration can be beneficial by enhancing plasticity in intact brain regions.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3