STN Stimulation Alters Pallidal—Frontal Coupling during Response Selection under Competition

Author:

Thobois Stéphane1,Hotton Gary R2,Pinto Serge1,Wilkinson Leonora1,Limousin-Dowsey Patricia1,Brooks David J2,Jahanshahi Marjan1

Affiliation:

1. Functional Neurosurgery Unit, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, London, UK

2. Hammersmith Imanet, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK

Abstract

To investigate the effects of bilateral subthalamic nucleus (STN) stimulation on patterns of brain activation during random number generation (RNG), a task that requires suppression of habitual counting and response selection under competition. We used [Formula: see text] positron emission tomography to investigate the changes of regional cerebral blood flow (rCBF) induced by bilateral STN stimulation during a RNG task, in six patients with Parkinson's disease. Paced RNG at 1 Hz was compared with a control counting task. Both tasks were performed off medication with deep brain stimulation on and off. Subthalamic nucleus stimulation had a negative effect on performance of fast-paced RNG, leading to reduced randomness and increased habitual counting. Subthalamic nucleus stimulation also induced a reduction of rCBF in the left dorsal frontal gyrus, inferior frontal gyrus, dorsolateral prefrontal cortex, posterior and right anterior cingulate, and an increase of rCBF in the right internal globus pallidum (GPi) during RNG. Stimulation of the STN significantly altered pallidal coupling with frontal and temporal areas compared with when the stimulators were off. In conclusion, during RNG: (i) STN stimulation activates its output neurons to the GPi; (ii) STN stimulation induces increased inhibition of a prefrontal—cingulate network. This is the first direct evidence that STN stimulation significantly alters pallidal coupling with prefrontal, cingulate, and temporal cortices during performance of a task that requires response selection under competition.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3