Affiliation:
1. Department of Neural and Vascular Biology, Ordway Research Institute, Albany, New York, USA
2. Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Abstract
Accumulating evidence indicates a significant astrocytic involvement in cerebral ischemia neuropathology, but little is known about the immediate astrocytic responses to ischemia insults in terms of electrophysiology and their pathologic implications. We show that astrocytes in acute rat hippocampal slices responded reversibly to more than 30 mins oxygen and glucose deprivation (OGD) treatment with depolarized membrane potentials ( Vm) in whole-cell current clamp recording. This depolarization was multiphasic, showing an initial ~11 mins small-amplitude depolarization plateau, followed by a 6-mins accelerated depolarization, and then a second plateau. Oxygen and glucose deprivation-induced astrocyte Vm depolarization was only marginally inhibited, ~10%, by inhibition of ionotropic glutamate, γ-aminobutyric acid, purinergic receptors, and glutamate transporters presumed to be present on astrocytes in situ, suggesting increase in extracellular [K+] was primarily responsible for the astrocytic Vm change. The Vm depolarization was five-fold greater when glycolysis was inhibited by iodoacetate in a short 8 mins OGD treatment, suggesting glycolytic ATP is critical in maintaining extracellular K+ homeostasis in the early phase of OGD. Addition of oxidative metabolism inhibitors had much less effect. Cessation of OGD was always followed by a rapid and transient 9 mV astrocyte Vm hyperpolarization relative to the control Vm that was inhibited by ouabain, indicating a reactively enhanced Na+/K+-ATPase activity in post-OGD reperfusion. Altogether, hippocampal astrocytes appear to be electrophysiologically more resistant to acute ischemia insults as compared with neurons, and this should allow astrocytes to rescue endangered neurons in the face of acute ischemia insults via their various homeostatic functions.
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献