When Perfusion Meets Diffusion: in vivo Measurement of Water Permeability in Human Brain

Author:

Wang Jiongjiong12,Fernández-Seara María A2,Wang Sumei1,Lawrence Keith S St3

Affiliation:

1. Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

2. Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA

3. Lawson Health Research Institute, London, Ontario, Canada

Abstract

Quantification of water permeability can improve the accuracy of perfusion measurements obtained with arterial spin labeling (ASL) methods, and may provide clinically relevant information regarding the functional status of the microvasculature. The amount of labeled water in the vascular and tissue compartments in an ASL experiment can be estimated based on their distinct diffusion characteristics, and in turn, water permeability determined from the relative vascular and tissue contributions. In the present study, a hybrid magnetic resonance imaging technique was introduced by marrying a continuous ASL method with a twice-refocused spin—echo diffusion sequence. Series of diffusion-weighted ASL signals were acquired with systematically varied b values. The signals were modeled with fast and slow decaying components that were associated with the vascular and tissue compartments, respectively. The relative amount of labeled water in the tissue compartment increased from 61% to 74% and to 86% when the postlabeling delay time was increased from 0.8 to 1.2 and to 1.5 secs. With a b value of 50 secs/mm2 the capillary contribution (fast component) of the ASL signal could be effectively minimized. Using the single-pass approximation model, the water permeability of gray matter in the human brain was estimated based on the derived relative water fractions in the tissue and microvasculature. The potential for in vivo magnetic resonance mapping of water permeability was showed using two diffusion weighted ASL measurements with b = 0 and 50 secs/mm2 in both healthy subjects and a case of brain tumor.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),Neurology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3