DEDDIAG, a domestic electricity demand dataset of individual appliances in Germany

Author:

Wenninger MarcORCID,Maier AndreasORCID,Schmidt JochenORCID

Abstract

AbstractReal-world domestic electricity demand datasets are the key enabler for developing and evaluating machine learning algorithms that facilitate the analysis of demand attribution and usage behavior. Breaking down the electricity demand of domestic households is seen as the key technology for intelligent smart-grid management systems that seek an equilibrium of electricity supply and demand. For the purpose of comparable research, we publish DEDDIAG, a domestic electricity demand dataset of individual appliances in Germany. The dataset contains recordings of 15 homes over a period of up to 3.5 years, wherein total 50 appliances have been recorded at a frequency of 1 Hz. Recorded appliances are of significance for load-shifting purposes such as dishwashers, washing machines and refrigerators. One home also includes three-phase mains readings that can be used for disaggregation tasks. Additionally, DEDDIAG contains manual ground truth event annotations for 14 appliances, that provide precise start and stop timestamps. Such annotations have not been published for any long-term electricity dataset we are aware of.

Funder

Bundesministerium für Bildung und Forschung

Bayerische Wissenschaftsforum

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference30 articles.

1. EU Directive 2009/72/EG. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0072from=EN (2019).

2. NATIONAL ENERGY EFFICIENCY ACTION PLAN 2020. https://ec.europa.eu/energy/sites/ener/files/si_neeap_2017_en.pdf (2017).

3. Le Ray, G. & Pinson, P. The ethical smart grid: Enabling a fruitful and long-lasting relationship between utilities and customers. Energy Policy 140, 111258, https://doi.org/10.1016/j.enpol.2020.111258 (2020).

4. Kolter, Z. & Johnson, M. J. REDD: A public data set for energy disaggregation research. In Proc. of the KDD Workshop on Data Mining Applications in Sustainability (SustKDD) (2011).

5. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 2278–2324, https://doi.org/10.1109/5.726791 (1998).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3