Abstract
AbstractHuman Muscular Manipulability is a metric that measures the comfort of an specific pose and it can be used for a variety of applications related to healthcare. For this reason, we introduce KIMHu: a Kinematic, Imaging and electroMyography dataset for Human muscular manipulability index prediction. The dataset is comprised of images, depth maps, skeleton tracking data, electromyography recordings and 3 different Human Muscular Manipulability indexes of 20 participants performing different physical exercises with their arm. The methodology followed to acquire and process the data is also presented for future replication. A specific analysis framework for Human Muscular Manipulability is proposed in order to provide benchmarking tools based on this dataset.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献