Abstract
AbstractDuring brain development, neural stem cells (NSCs) undergo multiple fate-switches to generate various neuronal subtypes and glial cells, exhibiting distinct transcriptomic profiles at different stages. However, full-length transcriptomic datasets of NSCs across different neurodevelopmental stages under similar experimental settings are lacking, which is essential for uncovering stage-specific transcriptional and post-transcriptional mechanisms underlying the fate commitment of NSCs. Here, we report the full-length transcriptome of mouse NSCs at five different stages during embryonic and postnatal development. We used fluorescent-activated cell sorting (FACS) to isolate CD133+Blbp+ NSCs from C57BL/6 transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of a Blbp promoter. By integrating short- and long-read full-length RNA-seq, we created a transcriptomic dataset of gene and isoform expression profiles in NSCs at embryonic days 15.5, 17.5, and postnatal days 1.5, 8, and 60. This dataset provides a detailed characterization of full-length transcripts in NSCs at distinct developmental stages, which could be used as a resource for the neuroscience community to study NSC fate determination, neural development, and disease.
Funder
Ministry of Science and Technology of the People's Republic of China
Science Foundation for Excellent Youth Scholars of Sichuan University
National Natural Science Foundation of China
West China Hospital
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献