VISEM-Tracking, a human spermatozoa tracking dataset

Author:

Thambawita VajiraORCID,Hicks Steven A.,Storås Andrea M.,Nguyen Thu,Andersen Jorunn M.,Witczak Oliwia,Haugen Trine B.,Hammer Hugo L.,Halvorsen PålORCID,Riegler Michael A.ORCID

Abstract

AbstractA manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-aided sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 frames) of wet semen preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex DL models to analyze spermatozoa.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference26 articles.

1. Gill, M. E. & Quaas, A. M. Looking with new eyes: advanced microscopy and artificial intelligence in reproductive medicine. Journal of Assisted Reproduction and Genetics 1–5, https://doi.org/10.1007/s10815-022-02693-9 (2022).

2. Riegler, M. A. et al. Artificial intelligence in the fertility clinic: status, pitfalls and possibilities. Human Reproduction 36, 2429–2442, https://doi.org/10.1093/humrep/deab168 (2021).

3. Thambawita, V., Halvorsen, P., Hammer, H., Riegler, M. & Haugen, T. B. Stacked dense optical flows and dropout layers to predict sperm motility and morphology. In Proceedings of the CEUR Multimedia Benchmark Workshop (MediaEval) (2019).

4. Hicks, S. A. et al. Machine learning-based analysis of sperm videos and participant data for male fertility prediction. Scientific reports 9, 1–10, https://doi.org/10.1038/s41598-019-53217-y (2019).

5. Thambawita, V., Halvorsen, P., Hammer, H., Riegler, M. & Haugen, T. B. Extracting temporal features into a spatial domain using autoencoders for sperm video analysis. In Proceedings of the CEUR Multimedia Benchmark Workshop (MediaEval) (2019).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3