Abstract
AbstractAn enduring question in cognitive science is how perceptually novel objects are processed. Addressing this issue has been limited by the absence of a standardised set of object-like stimuli that appear realistic, but cannot possibly have been previously encountered. To this end, we created a dataset, at the core of which are images of 400 perceptually novel objects. These stimuli were created using Generative Adversarial Networks that integrated features of everyday stimuli to produce a set of synthetic objects that appear entirely plausible, yet do not in fact exist. We curated an accompanying dataset of 400 familiar stimuli, which were matched in terms of size, contrast, luminance, and colourfulness. For each object, we quantified their key visual properties (edge density, entropy, symmetry, complexity, and spectral signatures). We also confirmed that adult observers (N = 390) perceive the novel objects to be less familiar, yet similarly engaging, relative to the familiar objects. This dataset serves as an open resource to facilitate future studies on visual perception.
Funder
Department of Education and Training | Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献