A daily high-resolution (1 km) human thermal index collection over the North China Plain from 2003 to 2020

Author:

Li XiangORCID,Luo MingORCID,Zhao Yongquan,Zhang Hui,Ge Erjia,Huang Ziwei,Wu Sijia,Wang Peng,Wang Xiaoyu,Tang Yu

Abstract

AbstractHuman-perceived temperature (HPT) describes the joint effects of multiple climatic factors such as temperature and humidity. Extreme HPT events may reduce labor capacity and cause thermal discomfort and even mortality. These events are becoming more frequent and more intense under global warming, posing severe threats to human and natural systems worldwide, particularly in populated areas with intensive human activities, e.g., the North China Plain (NCP). Therefore, a fine-scale HPT dataset in both spatial and temporal dimensions is urgently needed. Here we construct a daily high-resolution (~1 km) human thermal index collection over NCP from 2003 to 2020 (HiTIC-NCP). This dataset contains 12 HPT indices and has high accuracy with averaged determination coefficient, mean absolute error, and root mean squared error of 0.987, 0.970 °C, and 1.292 °C, respectively. Moreover, it exhibits high spatiotemporal consistency with ground-level observations. The dataset provides a reference for human thermal environment and could facilitate studies such as natural hazards, regional climate change, and urban planning.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference82 articles.

1. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).

2. Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305, 994–997 (2004).

3. Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres. 111, D05109 (2006).

4. Wu, S. et al. Local mechanisms for global daytime, nighttime, and compound heatwaves. npj Climate and Atmospheric Science. 6, 36 (2023).

5. Zhang, H. et al. Unequal urban heat burdens impede climate justice and equity goals. The Innovation. 4, 100488 (2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3