Abstract
AbstractUnderstanding how cancer cells interact with the surrounding microenvironment early in breast cancer development can provide insight into the initiation and progression of invasive breast cancers. The myoepithelial cell layer surrounding breast ducts acts as a physical barrier in early breast cancer, preventing cancer cells from invading the surrounding stroma. Changes to the expression profile and properties of myoepithelial cells have been implicated in progression to invasive carcinoma. Identifying the molecular drivers of myoepithelial cell-mediated tumour suppression may offer new approaches to predict and block the earliest stages of cancer invasion. We employed a high-content approach to knock down 87 different genes using siRNA in an immortalised myoepithelial cell line, prior to co-culture with invasive breast cancer cells in 3D. Combined with high-content imaging and a customised analysis pipeline, this system was used to identify myoepithelial proteins that are necessary to control cancer cell invasion. This dataset has identified prospective myoepithelial suppressors of early breast cancer invasion which may be used by researchers to investigate their clinical validity and utility.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献