A brain MRI dataset and baseline evaluations for tumor recurrence prediction after Gamma Knife radiotherapy

Author:

Wang Yibin,Duggar William Neil,Caballero David Michael,Thomas Toms Vengaloor,Adari Neha,Mundra Eswara Kumar,Wang Haifeng

Abstract

AbstractPrediction and identification of tumor recurrence are critical for brain cancer treatment design and planning. Stereotactic radiation therapy delivered with Gamma Knife has been developed as one of the common treatment approaches combined with others by delivering radiation that targets accurately on the tumor while not affecting nearby healthy tissues. In this paper, we release a fully publicly available brain cancer MRI dataset and the companion Gamma Knife treatment planning and follow-up data for the purpose of tumor recurrence prediction. The dataset contains original patient MRI images, radiation therapy data, and clinical information. Lesion annotations are provided, and inclusive preprocessing steps have been specified to simplify the usage of this dataset. A baseline framework based on a convolutional neural network is proposed companionably with basic evaluations. The release of this dataset will contribute to the future development of automated brain tumor recurrence prediction algorithms and promote the clinical implementations associated with the computer vision field. The dataset is made publicly available on The Cancer Imaging Archive (TCIA) (https://doi.org/10.7937/xb6d-py67).

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3