Seventy-year long record of monthly water balance estimates for Earth’s largest lake system

Author:

Do Hong X.ORCID,Smith Joeseph P.ORCID,Fry Lauren M.,Gronewold Andrew D.

Abstract

AbstractWe develop new estimates of monthly water balance components from 1950 to 2019 for the Laurentian Great Lakes, the largest surface freshwater system on Earth. For each of the Great Lakes, lake storage changes and water balance components were estimated using the Large Lakes Statistical Water Balance Model (L2SWBM). Multiple independent data sources, contributed by a binational community of research scientists and practitioners, were assimilated into the L2SWBM to infer feasible values of water balance components through a Bayesian framework. A conventional water balance model was used to constrain the new estimates, ensuring that the water balance can be reconciled over multiple time periods. The new estimates are useful for investigating changes in water availability, or benchmarking new hydrological models and data products developed for the Laurentian Great Lakes Region. The source code and inputs of the L2SWBM model are also made available, and can be adapted to include new data sources for the Great Lakes, or to address water balance problems on other large lake systems.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3