A labeled dataset for building HVAC systems operating in faulted and fault-free states

Author:

Granderson Jessica,Lin Guanjing,Chen YiminORCID,Casillas Armando,Wen Jin,Chen Zhelun,Im Piljae,Huang Sen,Ling Jiazhen

Abstract

AbstractOpen data is fueling innovation across many fields. In the domain of building science, datasets that can be used to inform the development of operational applications - for example new control algorithms and performance analysis methods - are extremely difficult to come by. This article summarizes the development and content of the largest known public dataset of building system operations in faulted and fault free states. It covers the most common HVAC systems and configurations in commercial buildings, across a range of climates, fault types, and fault severities. The time series points that are contained in the dataset include measurements that are commonly encountered in existing buildings as well as some that are less typical. Simulation tools, experimental test facilities, and in-situ field operation were used to generate the data. To inform more data-hungry algorithms, most of the simulated data cover a year of operation for each fault-severity combination. The data set is a significant expansion of that first published by the lead authors in 2020.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3