The MetroPT dataset for predictive maintenance

Author:

Veloso BrunoORCID,Ribeiro Rita P.,Gama João,Pereira Pedro Mota

Abstract

AbstractThe paper describes the MetroPT data set, an outcome of a Predictive Maintenance project with an urban metro public transportation service in Porto, Portugal. The data was collected in 2022 to develop machine learning methods for online anomaly detection and failure prediction. Several analog sensor signals (pressure, temperature, current consumption), digital signals (control signals, discrete signals), and GPS information (latitude, longitude, and speed) provide a framework that can be easily used and help the development of new machine learning methods. This dataset contains some interesting characteristics and can be a good benchmark for predictive maintenance models.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability-improved machine learning model using knowledge-embedded learning approach for smart manufacturing;Journal of Intelligent Manufacturing;2024-09-09

2. From fault detection to anomaly explanation: A case study on predictive maintenance;Journal of Web Semantics;2024-07

3. Digital Sensor Forecasting for Metro Air Units: A Vector Autoregression Approach;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Predictive Maintenance Framework for Urban Metro Vehicles;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

5. Enhancing Metro Rail Efficiency: A Predictive Maintenance Approach Leveraging Machine Learning and Deep Learning Technologies;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3