Abstract
AbstractThe detection, identification, and localization of illicit nuclear materials in urban environments is of utmost importance for national security. Most often, the process of performing these operations consists of a team of trained individuals equipped with radiation detection devices that have built-in algorithms to alert the user to the presence nuclear material and, if possible, to identify the type of nuclear material present. To encourage the development of new detection, radioisotope identification, and source localization algorithms, a dataset consisting of realistic Monte Carlo–simulated radiation detection data from a 2 in. × 4 in. × 16 in. NaI(Tl) scintillation detector moving through a simulated urban environment based on Knoxville, Tennessee, was developed and made public in the form of a Topcoder competition. The methodology used to create this dataset has been verified using experimental data collected at the Fort Indiantown Gap National Guard facility. Realistic signals from special nuclear material and industrial and medical sources are included in the data for developing and testing algorithms in a dynamic real-world background.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Reference19 articles.
1. Knoll, G. F. Radiation Detection and Measurement 3rd edn (John Wiley & Sons, 2010).
2. Radiation Solutions Inc. RS-700 mobile radiation monitoring system, http://www.radiationsolutions.ca/wp-content/uploads/2019/02/RS700-Feb-2019.pdf. (2019).
3. Saint-Gobain. NaI(Tl) scintillation crystals, https://www.crystals.saint-gobain.com/products/nai-sodium-iodide.
4. Ingersoll, J. G. A survey of radionuclide contents and radon emanation rates in building materials used in the US. Health Phys. 45, 363–368 (1983).
5. Myrick, T., Berven, B. & Haywood, F. Determination of concentrations of selected radionuclides in surface soil in the US. Health Phys. 45, 631–642 (1983).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献