A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

Author:

Chen Xingan,Huang Yuefei,Nie Chong,Zhang ShuoORCID,Wang Guangqian,Chen Shiliu,Chen Zhichao

Abstract

AbstractPhotosynthesis is a key process linking carbon and water cycles, and satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. The TROPOspheric Monitoring Instrument (TROPOMI) on the Copernicus Sentinel-5P mission enables significant improvements in providing high spatial and temporal resolution SIF observations, but the short temporal coverage of the data records has limited its applications in long-term studies. This study uses machine learning to reconstruct TROPOMI SIF (RTSIF) over the 2001–2020 period in clear-sky conditions with high spatio-temporal resolutions (0.05° 8-day). Our machine learning model achieves high accuracies on the training and testing datasets (R2 = 0.907, regression slope = 1.001). The RTSIF dataset is validated against TROPOMI SIF and tower-based SIF, and compared with other satellite-derived SIF (GOME-2 SIF and OCO-2 SIF). Comparing RTSIF with Gross Primary Production (GPP) illustrates the potential of RTSIF for estimating gross carbon fluxes. We anticipate that this new dataset will be valuable in assessing long-term terrestrial photosynthesis and constraining the global carbon budget and associated water fluxes.

Funder

National Natural Science Foundation of China

Major Basic Research Development Program of the Science and Technology Agent, Qinghai Province

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3