Abstract
AbstractBrain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a neural mechanism that prioritises the sensory processing of task-relevant stimulus features (feature-based attention) or task-relevant spatial locations (spatial attention). Within the visual modality, attentional modulation of neural responses to different inputs is well indexed by steady-state visual evoked potentials (SSVEPs). These signals are reliably present in single-trial electroencephalography (EEG) data, are largely resilient to common EEG artifacts, and allow separation of neural responses to numerous concurrently presented visual stimuli. To date, efforts to use single-trial SSVEPs to classify visual attention for BCI control have largely focused on spatial attention rather than feature-based attention. Here, we present a dataset that allows for the development and benchmarking of algorithms to classify feature-based attention using single-trial EEG data. The dataset includes EEG and behavioural responses from 30 healthy human participants who performed a feature-based motion discrimination task on frequency tagged visual stimuli.
Funder
Department of Education and Training | ARC | Centre of Excellence for Integrative Brain Function, Australian Research Council
Department of Health | National Health and Medical Research Council
Canadian Institute for Advanced Research
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献