UWB-gestures, a public dataset of dynamic hand gestures acquired using impulse radar sensors

Author:

Ahmed Shahzad,Wang Dingyang,Park JunyoungORCID,Cho Sung HoORCID

Abstract

AbstractIn the past few decades, deep learning algorithms have become more prevalent for signal detection and classification. To design machine learning algorithms, however, an adequate dataset is required. Motivated by the existence of several open-source camera-based hand gesture datasets, this descriptor presents UWB-Gestures, the first public dataset of twelve dynamic hand gestures acquired with ultra-wideband (UWB) impulse radars. The dataset contains a total of 9,600 samples gathered from eight different human volunteers. UWB-Gestures eliminates the need to employ UWB radar hardware to train and test the algorithm. Additionally, the dataset can provide a competitive environment for the research community to compare the accuracy of different hand gesture recognition (HGR) algorithms, enabling the provision of reproducible research results in the field of HGR through UWB radars. Three radars were placed at three different locations to acquire the data, and the respective data were saved independently for flexibility.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introducing an indoor object classification dataset including sparse point clouds from mmWave radar;Scientific Data;2024-08-03

2. Beyond Radar Waves: The First Workshop on Radar-Based Human-Computer Interaction;Companion of the16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems;2024-06-24

3. Review of the Open Data Sets for Contactless Sensing;IEEE Internet of Things Journal;2024-06-01

4. ÖN-EĞİTİLMİŞ DERİN SİNİR AĞLARI KULLANILARAK ULTRA GENİŞ BANT RADAR TABANLI EL HAREKETİ TANIMA;Mühendislik Bilimleri ve Tasarım Dergisi;2024-03-25

5. Gesture Detection Using IEEE 802.15.4z-Compliant Impulse Radio UWB Radar System;2024 IEEE 4th International Symposium on Joint Communications & Sensing (JC&S);2024-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3