A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches

Author:

Félix BenjaminORCID,Sevellec Yann,Palma Federica,Douarre Pierre Emmanuel,Felten Arnaud,Radomski NicolasORCID,Mallet LudovicORCID,Blanchard Yannick,Leroux Aurélie,Soumet ChristopheORCID,Bridier ArnaudORCID,Piveteau Pascal,Ascensio ElietteORCID,Hébraud Michel,Karpíšková Renáta,Gelbíčová Tereza,Torresi MarinaORCID,Pomilio Francesco,Cammà Cesare,Di Pasquale Adriano,Skjerdal Taran,Pietzka Ariane,Ruppitsch Werner,Canelhas Monica Ricão,Papić Bojan,Hurtado AnaORCID,Wullings Bart,Bulawova Hana,Castro Hanna,Lindström Miia,Korkeala HannuORCID,Šteingolde Žanete,Kramarenko Toomas,Cabanova Lenka,Szymczak BarbaraORCID,Gareis Manfred,Oswaldi Verena,Marti Elisabet,Seyfarth Anne-Mette,Leblanc Jean-Charles,Guillier LaurentORCID,Roussel Sophie

Abstract

AbstractListeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3