High-resolution livestock seasonal distribution data on the Qinghai-Tibet Plateau in 2020

Author:

Zhan Ning,Liu WeihangORCID,Ye TaoORCID,Li Hongda,Chen Shuo,Ma Heng

Abstract

AbstractIncorporating seasonality into livestock spatial distribution is of great significance for studying the complex system interaction between climate, vegetation, water, and herder activities, associated with livestock. The Qinghai-Tibet Plateau (QTP) has the world’s most elevated pastoral area and is a hot spot for global environmental change. This study provides the spatial distribution of cattle, sheep, and livestock grazing on the warm-season and cold-season pastures at a 15 arc-second spatial resolution on the QTP. Warm/cold-season pastures were delineated by identifying the key elements that affect the seasonal distribution of grazing and combining the random forest classification model, and the average area under the receiver operating characteristic curve of the model is 0.98. Spatial disaggregation weights were derived using the prediction from a random forest model that linked county-level census livestock numbers to topography, climate, vegetation, and socioeconomic predictors. The coefficients of determination of external cross-scale validations between dasymetric mapping results and township census data range from 0.52 to 0.70. The data could provide important information for further modeling of human-environment interaction under climate change for this region.

Funder

Ministry of Science and Technology of the People's Republic of China

The Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3