A benchmark GaoFen-7 dataset for building extraction from satellite images

Author:

Chen PeiminORCID,Huang Huabing,Ye Feng,Liu Jinying,Li Weijia,Wang Jie,Wang Zixuan,Liu Chong,Zhang Ning

Abstract

AbstractAccurate building extraction is crucial for urban understanding, but it often requires a substantial number of building samples. While some building datasets are available for model training, there remains a lack of high-quality building datasets covering urban and rural areas in China. To fill this gap, this study creates a high-resolution GaoFen-7 (GF-7) Building dataset utilizing the Chinese GF-7 imagery from six Chinese cities. The dataset comprises 5,175 pairs of 512 × 512 image tiles, covering 573.17 km2. It contains 170,015 buildings, with 84.8% of the buildings in urban areas and 15.2% in rural areas. The usability of the GF-7 Building dataset has been proved with seven convolutional neural networks, all achieving an overall accuracy (OA) exceeding 93%. Experiments have shown that the GF-7 building dataset can be used for building extraction in urban and rural scenarios. The proposed dataset boasts high quality and high diversity. It supplements existing building datasets and will contribute to promoting new algorithms for building extraction, as well as facilitating intelligent building interpretation in China.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3