Harmonizing existing climate change mitigation policy datasets with a hybrid machine learning approach

Author:

Wu LiboORCID,Huang ZhihaoORCID,Zhang Xing,Wang Yushi

Abstract

AbstractWith the rapid proliferation of climate policies in both number and scope, there is an increasing demand for a global-level dataset that provides multi-indicator information on policy elements and their implementation contexts. To address this need, we developed the Global Climate Change Mitigation Policy Dataset (GCCMPD) using a semisupervised hybrid machine learning approach, drawing upon policy information from global, regional, and sector-specific sources. Differing from existing climate policy datasets, the GCCMPD covers a large range of policies, amounting to 73,625 policies of 216 entities. Through the integration of expert knowledge-based dictionary mapping, probability statistics methods, and advanced natural language processing technology, the GCCMPD offers detailed classification of multiple indicators and consistent information on sectoral policy instruments. This includes insights into objectives, target sectors, instruments, legal compulsion, administrative entities, etc. By aligning with the sector classification of the Intergovernmental Panel on Climate Change (IPCC) emission datasets, the GCCMPD serves to help policy-makers, researchers, and social organizations gain a deeper understanding of the similarities and distinctions among climate activities across countries, sectors, and entities.

Funder

China Natural Science Foundation for Young Talents

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3