CheXmask: a large-scale dataset of anatomical segmentation masks for multi-center chest x-ray images

Author:

Gaggion NicolásORCID,Mosquera Candelaria,Mansilla Lucas,Saidman Julia Mariel,Aineseder Martina,Milone Diego H.,Ferrante EnzoORCID

Abstract

AbstractThe development of successful artificial intelligence models for chest X-ray analysis relies on large, diverse datasets with high-quality annotations. While several databases of chest X-ray images have been released, most include disease diagnosis labels but lack detailed pixel-level anatomical segmentation labels. To address this gap, we introduce an extensive chest X-ray multi-center segmentation dataset with uniform and fine-grain anatomical annotations for images coming from five well-known publicly available databases: ChestX-ray8, CheXpert, MIMIC-CXR-JPG, Padchest, and VinDr-CXR, resulting in 657,566 segmentation masks. Our methodology utilizes the HybridGNet model to ensure consistent and high-quality segmentations across all datasets. Rigorous validation, including expert physician evaluation and automatic quality control, was conducted to validate the resulting masks. Additionally, we provide individualized quality indices per mask and an overall quality estimation per dataset. This dataset serves as a valuable resource for the broader scientific community, streamlining the development and assessment of innovative methodologies in chest X-ray analysis.

Funder

Universidad Nacional del Litoral

Ministry of Science, Technology and Productive Innovation, Argentina | Agencia Nacional de Promoción Científica y Tecnológica

Publisher

Springer Science and Business Media LLC

Reference36 articles.

1. Rajpurkar, P. et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017).

2. Irvin, J. et al. Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI conference on artificial intelligence, vol. 33, 590–597 (2019).

3. Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annual review of biomedical engineering 19, 221–248 (2017).

4. Litjens, G. et al. A survey on deep learning in medical image analysis. Medical image analysis 42, 60–88 (2017).

5. Roulet, N., Slezak, D. F. & Ferrante, E. Joint learning of brain lesion and anatomy segmentation from heterogeneous datasets. In International Conference on Medical Imaging with Deep Learning, 401–413 (PMLR, 2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3