A Spitzoid Tumor dataset with clinical metadata and Whole Slide Images for Deep Learning models

Author:

Mosquera-Zamudio AndrésORCID,Launet Laëtitia,del Amor Rocío,Moscardó Anaïs,Colomer Adrián,Naranjo Valery,Monteagudo Carlos

Abstract

AbstractSpitzoid tumors (ST) are a group of melanocytic tumors of high diagnostic complexity. Since 1948, when Sophie Spitz first described them, the diagnostic uncertainty remains until now, especially in the intermediate category known as Spitz tumor of unknown malignant potential (STUMP) or atypical Spitz tumor. Studies developing deep learning (DL) models to diagnose melanocytic tumors using whole slide imaging (WSI) are scarce, and few used ST for analysis, excluding STUMP. To address this gap, we introduce SOPHIE: the first ST dataset with WSIs, including labels as benign, malignant, and atypical tumors, along with the clinical information of each patient. Additionally, we explain two DL models implemented as validation examples using this database.

Funder

EC | Horizon 2020 Framework Programme

Ministry of Economy and Competitiveness | Instituto de Salud Carlos III

Ministerio de Economía y Competitividad

Spanish Ministry of Universities

Universitat Politècnica de València

Generalitat Valenciana

Valencian Graduate School and Research Network for Artificial Intelligence

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3