TreeMap, a tree-level model of conterminous US forests circa 2014 produced by imputation of FIA plot data

Author:

Riley Karin L.ORCID,Grenfell Isaac C.,Finney Mark A.,Wiener Jason M.

Abstract

AbstractA 30 × 30m-resolution gridded dataset of forest plot identifiers was developed for the conterminous United States (CONUS) using a random forests machine-learning imputation approach. Forest plots from the US Forest Service Forest Inventory and Analysis program (FIA) were imputed to gridded c2014 landscape data provided by the LANDFIRE project using topographic, biophysical, and disturbance variables. The output consisted of a raster map of plot identifiers. From the plot identifiers, users of the dataset can link to a number of tree- and plot-level attributes stored in the accompanying tables and in the publicly available FIA DataMart, and then produce maps of any of these attributes, including number of trees per acre, tree species, and forest type. Of 67,141 FIA plots available, 62,758 of these (93.5%) were utilized at least once in imputation to 2,841,601,981 forested pixels in CONUS. Continuous high-resolution forest structure data at a national scale will be invaluable for analyzing carbon dynamics, habitat distributions, and fire effects.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference30 articles.

1. Blackard, J. A. et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008).

2. Jenkins, J. C., Birdsey, R. A. & Pan, Y. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecol. Appl. 11, 1174–1193 (2001).

3. Calkin, D. E. et al. A comparative risk assessment framework for wildland fire management: The 2010 COHESIVE STRATEGY science report (USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-262, Fort Collins, CO, 2011).

4. Burrill, E. A. et al. The Forest Inventory and Analysis Database: database description and user guide for Phase 2 (version 7.2). https://www.fia.fs.fed.us/library/database-documentation/current/ver72/FIADBUserGuideP2_7-2_final.pdf (2017).

5. Bechtold, W. A. & Patterson, P. L. The enhanced Forest Inventory and Analysis Program — National sampling design and estimation procedures (USDA Forest Service, Southern Research Station, General Technical Report GTR-SRS-80, Asheville, NC, 2005).

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3